黄前久美子:“不嫉妒比自己优秀的人,到底是优点还是缺点呢,我应该说些什么吗。这种小事让我不自觉地思考,有种令人害怕却无法否认的要钻进牛角尖里的感觉,它将我的不成熟摆在眼前,我也因此竭尽全力。”

# Lattice

Let (S,)(S,\sqsubseteq) be a partial order.

(S,)(S,\sqsubseteq) is a lattice if the meet and join of any pair of elements of SS always exists.

(S,)(S,\sqsubseteq) is a complete lattice if the meet and join of any subset of elements of SS always exists.

# Galois connection

Let (C,)(C,\subseteq) and (A,)(A,\sqsubseteq) be complete lattice, and let α:CA,γ:AC\alpha:C\rightarrow A,\gamma:A\rightarrow C.

We say (C,A,α,γ)(C,A,\alpha,\gamma) is a (monotone) Galois connection if for all cC,aAc\in C,a\in A:

α(c)a    cγ(a)\alpha(c)\sqsubseteq a\iff c\subseteq \gamma(a)


Lemma: In Galois connection, α,γ\alpha,\gamma are monotonic.

Proof:

cC.  α(c)α(c)cC.  cγ(α(c))cc.  cγ(α(c))cc.  α(c)α(c)\begin{aligned} & \because \forall c\in C.\;\alpha(c)\sqsubseteq\alpha(c)\\ & \therefore\forall c\in C.\;c\subseteq\gamma(\alpha(c))\\ & \therefore \forall c'\subseteq c.\;c'\subseteq\gamma(\alpha(c))\\ & \therefore \forall c'\subseteq c.\;\alpha(c')\sqsubseteq\alpha(c) \end{aligned}

Similarly we can prove that γ\gamma is monotonic.

\square.

Equivalent Definition: (C,A,α,γ)(C,A,\alpha,\gamma) is a (monotone) Galois connection if for all cC,aAc\in C,a\in A:

cγ(α(c)) and α(γ(a))ac\subseteq \gamma(\alpha(c))\text{ and }\alpha(\gamma(a))\sqsubseteq a

Proof:

  • (=>) Assume α(c)a    cγ(a)\alpha(c)\sqsubseteq a\iff c\subseteq\gamma(a).

    Because α(c)α(c)\alpha(c)\sqsubseteq\alpha(c), therefore cγ(α(c))c\subseteq\gamma(\alpha(c)). Similarly it ca be proved that α(γ(a))a\alpha(\gamma(a))\sqsubseteq a because γ(a)γ(a)\gamma(a)\subseteq\gamma(a).

  • (<=) Assume cγ(α(c))c\subseteq\gamma(\alpha(c)) and α(γ(a))a\alpha(\gamma(a))\sqsubseteq a.

    If α(c)a\alpha(c)\sqsubseteq a, then since γ\gamma is monotonic:

    cγ(α(c))γ(a)c\subseteq\gamma(\alpha(c))\sqsubseteq \gamma(a)

    Similarly, we can prove that if cγ(a)c\subseteq\gamma(a), then α(c)a\alpha(c)\sqsubseteq a

\square.

Lemma: idCγα\text{id}_C\leq \gamma\circ \alpha, idAαγ\text{id}_A\geq \alpha\circ\gamma.

Proof: By equivalent definition.

\square.

Lemma: α\alpha preserves suprema and γ\gamma preserves infima. i.e., given a subset XC,YAX\subseteq C,Y\subseteq A:

α(xXx)=xXα(x)γ(yYy)=yYγ(y)\alpha(\bigcup_{x\in X} x)=\bigvee_{x\in X}\alpha(x)\qquad \gamma(\bigwedge_{y\in Y}y)=\bigcap_{y\in Y}\gamma(y)

Proof: 我们只需要证明,α(x)\alpha(\bigcup x){α(x)xX}\{\alpha(x)\mid x\in X\} 的最小公共上界。

因为xX.  xx\forall x\in X.\;x\subseteq\bigcup x,那么根据单调性有xX.  α(x)α(x)\forall x\in X.\;\alpha(x)\sqsubseteq \alpha(\bigcup x). 下面我们证明它是最小的公共上界。

假设还有一个公共上界yy : xX.  α(x)y\forall x\in X.\;\alpha(x)\sqsubseteq y, 根据 Galois connection 就有xX.  xγ(y)\forall x\in X.\;x\subseteq\gamma(y). 因此xXxγ(y)\bigcup_{x\in X}x\subseteq\gamma(y) (γ(y)\gamma(y)XX 的一个公共上界,故大于其最小公共上界)。 那么就有α(x)α(γ(y))y\alpha(\bigcup x)\sqsubseteq\alpha(\gamma(y))\sqsubseteq y。因此,α(x)\alpha(\bigcup x) 是所有公共上界中最小的一个。下界同理。

\square.

Lemma: αγα=α\alpha\circ\gamma\circ\alpha=\alpha and γαγ=γ\gamma\circ\alpha\circ\gamma=\gamma.

Proof: Since γαidC\gamma\circ\alpha\geq\text{id}_C and αγidA\alpha\circ\gamma\leq\text{id}_A:

αγα(c)=α(γα)(c)α(c)αγα(c)=(αγ)α(c)α(c)\alpha\circ\gamma\circ\alpha(c)=\alpha\circ(\gamma\circ\alpha)(c)\sqsupseteq \alpha(c)\\ \alpha\circ\gamma\circ\alpha(c)=(\alpha\circ\gamma)\circ\alpha(c)\sqsubseteq \alpha(c)

thus αγα=α\alpha\circ\gamma\circ\alpha=\alpha. And the other cas e is similar.

\square.

# Galois Embedding

Let (C,A,α,γ)(C,A,\alpha,\gamma) a Galois connection.

It forms a Galois embedding if αγ=idA\alpha\circ\gamma=\text{id}_A.

Lemma: Given a Galois connection (C,A,α,γ)(C,A,\alpha,\gamma), the following conditions are equivalent:

  1. It forms a Galois embedding.

  2. α\alpha is a surjective function.

  3. γ\gamma is an injective function.

Proof:

  • (1 => 2) 若αγ=idA\alpha\circ\gamma=\text{id}_A,那么显然,aA.  y=γ(a)\forall a\in A.\;\exists y=\gamma(a) 使得α(y)=a\alpha(y)=a。故α\alpha 是满射。

  • (2 => 3) 若α\alpha 是满射,反设存在a1a2Aa_1\neq a_2\in A 使得γ(a1)=γ(a2)c\gamma(a_1)=\gamma(a_2)\triangleq c。因为α\alpha 是满射,所以存在c1,c2Cc_1,c_2\in C 使得α(c1)=a1,α(c2)=a2\alpha(c_1)=a_1,\alpha(c_2)=a_2。所以有:

α(c)=α(γ(a1))a1α(c)=α(γ(a2))a2\alpha(c)=\alpha(\gamma(a_1))\sqsubseteq a_1\\ \alpha(c)=\alpha(\gamma(a_2))\sqsubseteq a_2

​ 又因为c1γ(α(c1))=γ(a1)=cc_1\subseteq \gamma(\alpha(c_1))=\gamma(a_1)=c,同理也有c2cc_2\subseteq c,所以有:

a1=α(c1)α(c)a1a2=α(c2)α(c)a2a_1=\alpha(c_1)\sqsubseteq\alpha(c)\sqsubseteq a_1\\ a_2=\alpha(c_2)\sqsubseteq\alpha(c)\sqsubseteq a_2

​ 因此可以夹逼出a1=α(c)=a2a_1=\alpha(c)=a_2,矛盾。

  • (3 => 1) 若γ\gamma 是单射,反设存在aAa\in A 使得α(γ(a))=aa\alpha(\gamma(a))=a'\neq a。同时套上γ\gamma,有:

    γ(a)=γ(α(γ(a)))=γ(a)\gamma(a')=\gamma(\alpha(\gamma(a)))=\gamma(a)

    这和γ\gamma 是单射矛盾。

\square 证毕。

upd:实际上 Galois connection 可以看作两个 poset category 间的 adjunction